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ABSTRACT

As part of the Wisconsin road weather safety initiative, the objective of this study is to 
microscopically assess rainy weather effect on the severities of multi-vehicle involved crashes on 
Wisconsin interstate highways utilizing a polychotomous response model, sequential logistic 
regression.

Weather related factors considered in this study included estimated rainfall intensity for 15 
minutes prior to a crash occurrence, water film depth, temperature, wind speed/direction, stopping 
sight distance and car-following distance at the crash moment.  For each crash observation, 
weather station data around the crash location were interpolated using the inverse squared distance 
method.  Non-weather factors such as road geometries, traffic conditions, collision manners, 
vehicle types, and driver and temporal attributes were also considered.  The sequential logistic 
regression was tested with forward and backward formats for the polychotomous outcomes of 
multi-vehicle crash severity.  The best format to predict the multi-vehicle crash severities in rainy 
weather was selected by combining measures of model performance for goodness of fit, parameter 
significance, and prediction accuracies. 

In conclusion, the backward sequential logistic regression model produced the best results 
for predicting crash severities in rainy weather where water film depth, the number of traffic lanes, 
tangent roadway section, peak traffic hours, at-fault driver’s action at the crash moment, standard 
deviation of 5-minute traffic volume and safety belt usage were found to be statistically significant. 
These findings can be used to determine the probabilities of multi-vehicle crash severity in rainy 
weather and provide quantitative support on improving road weather safety via weather warning 
systems, highway facility improvements, and traffic management. 

Keywords: Road weather safety, rainy weather effect, multi-vehicle crash severities, sequential 
logistic regression
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INTRODUCTION

According to Wisconsin Traffic Crash Facts (1) from the Wisconsin Department of Transportation 
(WisDOT), there are 3,296 injury and fatal crashes in rainy weather, the greatest number of all 
kinds of inclement weather conditions from 1999 to 2006.  Specifically on Wisconsin interstate 
highways in rainy weather, multi-vehicle involved crashes occurred more frequently than single-
vehicle crashes.  From 1999 to 2006, 899 multi-vehicle crashes occurred on Wisconsin interstate 
highways in rainy weather and the number of multi-vehicle crashes is approximately 1.5 times 
more than the number of single-vehicle crashes (2).  Even though multi-vehicle crashes occurred 
more frequently on Wisconsin interstate highways in rainfall, reduction of severe multi-vehicle 
crashes is a way to improve road weather safety because the severe crashes involving injuries or 
fatalities cause much more economic loss than property damage only crashes.  

Weather has been frequently cited and found as one of the factors contributing to either a 
more or less severe crash.  The approaches for injury severity prediction with the weather factors 
vary from one to another, depending on the purpose of study and data availability.  Based on the 
purpose of this study, the focus of literature review will be specifically on the factors caused by 
rain at the time of multi-vehicle involved crashes.

First, rain-derived factors can affect multi-vehicle crash severities differently by collision 
types.  Shankar et al. estimated a nested logit model of accident severity that occurred on 
Washington rural interstate (13).  In their study, wet-pavement rear-end accident indicator was 
found to increase the likelihood of possible injuries, capturing the effect of rear-end accidents 
occurring in rainy weather.  They explain the reason that rainy weather conditions make vehicles in 
front more difficult to see and increase the distance required to stop, resulting in the injury crashes. 
Duncan et al. used ordered probit model to identify specific variables significantly influencing 
levels of injury in truck-passenger car rear-end involvements on divided roadways (14). 
Interaction wet and grade was found to significantly increase all injury propensities in their study. 
Similarly, Yan et al.’s study showed that the wet and slippery road surface greatly contributed to 
rear-end accidents at signalized intersections compared to a dry road surface (15).

Special attention has been given to vehicle types for multi-vehicle crash severity 
prediction.   In the study by Duncan et al., wet grades was found to increase particularly severe 
injuries to passenger car occupants in truck-passenger car rear-end crashes (14).  Haquea et al. 
utilized binary logit model to differentiate between at-fault and not-at-fault cases to identify the 
factors that contribute to the fault of motorcyclists involved in crashes (16).  In their study, 
motorcyclists were more likely to be victims than at-fault in multi-vehicle crashes and wet road 
surface was found to increase the likelihood of at-fault crashes at non-intersections. 

Rain-related effect on multi-vehicle crash severities has been identified along with roadway 
characteristics as well.  Khorashadi et al. explored the differences between urban and rural driver 
injuries in large truck involved accidents using multinomial logit analysis (17).  In their study, 
raining was found to increase the likelihood of complaint of pain accidents only in urban area. 
Deng et al. predicted the severities of head-on crashes that occurred on Connecticut two-lane roads 
utilizing ordered probit model (18).  It was found that a wet roadway surface and narrow road 
segments were significantly related to more severe crashes.  

Driver attributes such as age or gender also play important roles in the likelihood of injury 
severity associated with weather conditions.  Hill and Boyle investigated fatality and incapacitating 
injuries to occupants of passenger vehicles by a logistic regression model (19). The study showed 
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that crashes in adverse weather conditions with rain, snow or fog increased the risk of severe 
injuries to females that were 55 and older. 

Though numerous studies have been conducted in hopes of identifying the contributing 
factors to crash severities (3, 4, 5, 6, 7, 8, 9, 10, 11, 12), in these crash severity-based studies, 
weather is just one of the contributing factors, not necessarily the focus.  This study will identify a 
variety of significant predictors that contribute more serious multi-vehicle crash consequences 
particularly using only rainy weather related crashes.  Research findings from this study will 
provide guidance on countermeasures to prevent severe crashes related to rainy weather and 
improve overall safety.

SEQUENTIAL LOGISTIC REGRESSION MODEL

To model discrete outcome data, several modeling techniques such as traditional ordered 
probability, multinomial and nested logit models can be considered but the application to the 
dataset varies from one to another due to their limitations.  Crash severities are not only multiple 
discrete outcomes but also inherently ordered.  However, the multinomial and nested logit models 
do not account for the ordering of crash severities (20, 21, 22).  The traditional ordered probability 
approaches also impose a critical restriction that regression parameters have to be the same for 
different response outcomes, so called proportional odds assumption.  In reality, it is too arbitrary 
to assume that all coefficients across the response outcomes are the same (21, 22).

Alternatively, a generalized version of the ordered logit model was used to relax the 
proportional odds assumption (23).  However, the generalized ordered response model with 
separate parameter coefficients across the ordered response levels is recommended only to 
conclude that the proportional odds assumption is valid because the model is very anti-
conservative (24).  Based on the purpose of this study, a variety in sets of predictors across various 
severity levels is one of the most important issues.  Even though the generalized ordered logit 
model allows a separate coefficient for each predictor, the set of significant predictors is invariant 
over all the crash severity comparisons. 

In this study, consequently, sequential logistic regression approach was selected to predict 
rainy weather crash severities because this method not only accounts for the inherent ordering of 
crash severities but also allows different sets of regression parameters across the severity levels. 

The sequential logistic regression is composed of a series of standard logistic regression. 
Based on the S-shaped cumulative density function for the logistic regression, the probability of a 
certain outcome in the standard logistic regression is found with the following formula (25):

)(1

)(

XP

XP

− = EXP (α + βX) (1)

Where,
P(X) = P(Y = y | X) = Probability of response outcome,
Y = Response variable,
y = 0 or 1,
α = Intercept parameter,
β = Vector of parameter estimate,
X =Vector of explanatory variable.
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An interpretation of the logistic regression model uses the odds and the odds ratio of an 
event.  The odds of an event is a ratio of the probability that the event will occur divided by the 
probability that it will not.  The odds ratio is a ratio of the predicted odds for a one-unit change in 
Xi  with other variables in the model held constant.  

In this study, a series of standard logistic regression concept is applied at two stages to fit 
the sequential logistic regression model.  At the second stage, a sub-sample is used after removing 
observations of a certain crash severity used in the previous stages (26).  In order to explore 
whether there is an impact in the development of the sequential structure, forward and backward 
formats are conducted in the following way: 

Forward format:
Stage 1: Property damage only (PDO) vs. Others
Stage 2: Non-incapacitating/possible injuries vs. Fatal/incapacitating injuries

Backward format:
Stage 1: Fatal/incapacitating injuries vs. Others
Stage 2: Non-incapacitating/possible injuries vs. PDO

Using the standard logistic regression concept at each stage in two formats, the 
probabilities of crash severity levels can be written as follows:

Forward format:                                                                          

Stage 1:  
1

11

P

P−
= EXP (α1+ βX1) = h1 (2)

Stage 2: 
2

3

P

P
= EXP (α2+βX2) = h2 (3)

P1 = 
11

1

h+
(4)

P2 = 
)21)(11(

1

hh

h

++ (5)

P3 = 
)21)(11(

21

hh

hh

++ (6)

Backward format:

Stage 1: 
31

3

P

P

−
= EXP (α1+βX1) = I1   (7)

Stage 2: 
1

2

P

P
 = EXP (α2+βX2) = I2                     (8)

P1 = 
)21)(11(

1

II ++ (9)

P2 = 
)21)(11(

2

II

I

++ (10)
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P3 = 
11

1

I

I

+
(11)

Where,
P1 = Probability of PDO,
P2 = Probability of non-incapacitating/possible injury,
P3 = Probability of fatal/incapacitating injury.

MODEL PERFORMANCE MEASURES

Typical measures of model performance for goodness of fit and prediction accuracy are likelihood 
ratio test and prediction accuracy classification, respectively.  These measures are synthetically 
considered to assess crash severity prediction models in this study.

The likelihood ratio (LR) test reveals whether or not global null hypothesis for a specific 
model is rejected.  In other words, an estimated model containing at least one non-zero parameter 
coefficient is better fit than constant only model when p-value of LR test is less than a 
conventional criterion. 

Standard logistic regression model classifies an observation as an event if the estimated 
probability of the observation is greater than or equal to a given cut-point.  Otherwise, it is 
classified as a non-event.  In the statistical term, the rate of actual events that are also predicted to 
be events is called sensitivity.  Similarly, the rate of actual non-events that are also predicted to be 
non-events is called specificity.  The overall predictive power of a model depends on the 
proportion of correctly predicted observations (i.e., the sum of sensitivity and specificity).  In 
addition, there are two rates for incorrectly classified observations: false positive rate and false 
negative rate.  The false positive rate is the ratio of the number of non-events incorrectly classified 
as events to the total classified events while the false negative rate is a ratio of the number of 
events incorrectly classified as non-events to the sum of total classified non-events.  

Even though the predictive power of a model can be measured for all severity levels, 
sensitivity and false negative rate are emphasized for the highest crash severities (fatal and 
incapacitating injuries) because of their enormous economic loss.  Hence, in this study, a model 
that produces high sensitivity and low false negative rate at the classification stage for fatal and 
incapacitating injuries is considered as a good one. 

Note that the prediction accuracy in a model are variant by a probability cut-point since the 
model classifies an observation based on the given probability cut-point.  More severe crashes 
(event) do not frequently occur compared with less severe crashes (non-event).  From this 
perspective, the probability cut-point may be determined by practical consideration.  Since 
desirable prediction models should fit the field data well, probability cut-points used in this study 
are determined by overall trends of actual event proportions in the field data.

DATA COLLECTION AND PROCESSING

The study area consisted of approximately 75 miles of Southeastern Wisconsin highway segments 
including I-43, I-94, I-43/94 and I-43/894, where rainy weather crash frequency, average annual 
daily traffic and vehicle miles traveled was higher than any other interstate highway segments 
between 2004 and 2008.  The study area is shown in Figure 1.
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FIGURE 1 Study area (27).

Data Source 
Crash dataset for multi-vehicle crashes occurring in rainy weather were obtained from the 
Wisconsin Department of Transportation (WisDOT) crash database.  In addition to controlling 
rainy weather condition, the crash data used in this study were filtered through several criteria to 
form data homogeneity: wet pavement, multi-vehicle included in a crash, interstate highway 
divided by barrier, no construction zone, no hit and run and no pedestrian involved in a crash. 
Consequently, 536 crashes were produced in the study area from 2004 to 2008.  Crash dataset 
included variables indicating severity, roadway geometries, driver demographics, collision types, 
vehicle types, pavement conditions, and temporal and weather information.  

Incapacitating injury (type A) and fatal (type K) crashes were combined as the highest level 
of crash severity to obtain a meaningful sample size (28).  Possible injury (type C) and non-
incapacitating injury (type B) crashes were combined as the second highest level of crash severity 
because they were not distinguishable.  Property Damage Only crashes made up the lowest level of 
crash severity.  Crash frequency and the SAS program coding by the severities are provided in 
Table 1.

TABLE 1 Multi-Vehicle Crash Frequency in Rainy Weather
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Injury Severity
Sequential Logistic Regression
Forward Format Backward Format
Stage 1 Stage 2 Stage 1 Stage 2

Fatal and Incapacitating Injury 13 (1)1 13 (1) 13 (1) -
Non-incapacitating and Possible Injury 187 (1) 187 (0) 187 (0) 187 (1)
PDO 336 (0) - 336 (0) 336 (0)
Total 536 200 536 523

1 SAS coding of crash severity level 

State Truck Network (STN) highway log from WisDOT contains roadway geometric 
attributes, including the number and width for travel lane and shoulder as well as pavement 
surface.  Using the STN highway log, the geometric attributes were linked to crash dataset. 

V-SPOC traffic detectors collect and archive traffic data in Southeast Wisconsin every 30 
seconds.  Average vehicle volume, speed and occupancy data for five-minute intervals were 
obtained for one hour prior to each crash.  The associated standard deviations providing one hour 
temporal buffers prior to the crash were also collected due to the difference in density between 
crash and detector locations in study area. 

Based on the objective of this study, one of the most important tasks was to collect 
microscopic weather data at time of crash.  However, there were few weather data sources to 
provide minute base measurements.  A website run by Weather Underground Incorporation, 
combined with local weather data, delivered the most reliable and real-time weather data for 
Wisconsin (29).  Based on these data, 6 airport weather stations and 10 private weather stations 
were considered to obtain microscopic weather data in this study. 

Weather Parameters

Weather data directly collected from a weather station were temperature, wind speed/direction, 
rainfall precipitation and rainfall duration.  To reflect real-time weather conditions at the crash 
moment, weather data was estimated by interpolating between nearest three weather stations 
because weather data such as rainfall intensity or wind speed show geometrical and temporal 
variety.  Water film depth, stopping sight distance (SSD), and deficiency of car-following distance 
(DCD) were estimated by hourly rainfall precipitation, traffic, and road geometry data. 

Rainfall Intensity 
Rainfall intensity is defined as the rainfall precipitation divided by measurement interval.  The 
rainfall intensity reflects visibility on highway in rainy weather conditions.  Using three weather 
station data for each crash location, the average measurement interval of rainfall precipitation was 
15 minutes.  Therefore, rainfall precipitation for 15 minutes prior to a crash was adopted as the 
real-time rainfall intensity at the crash moment.  Compared to the weather data measurement 
intervals mentioned in the previous studies, 15-minute measurement interval used in this study was 
a more microscopic reflection of the real-time rainfall intensity at a crash moment.

Water Film Depth 
The water film created by rainfall exists between the tire and the pavement surface, leading to a 
decrease in skid resistance.  Russam and Ross gave the following empirical method to estimate 
water film depth (30):

8

TRB 2010 Annual Meeting CD-ROM Paper revised from original submittal.



Jung, Qin and Noyce

D =0.046
5/1

2/1)(

S

ISW ′
(12)

S = (Sl
2 + Sc

2)1/2 (13)

Where, 
D = Water film depth (mm/hr)
I = Rainfall intensity (mm/hr)
S′ = S/Sc

Sl = Longitudinal slope (%)
Sc = Slope of pavement cross section (%)
W = Width of pavement (m)

 Stopping Sight Distance and Deficiency of Car-following Distance
In this study, there were no direct visibility data for highways.  Therefore, stopping sight distance 
(SSD) and deficiency of car-following distance (DCD) were considered as the surrogate measures 
for highway visibility at the time of the crash.  First of all, SSD formula is as follows (31). 

SSD = 1.47Vt + 1.075
a

V
2

(14)

Where,
V = vehicle speed (mi/hr)
t = brake reaction time (sec)
a = deceleration rate (ft/s2)

According to a detailed study about pavement conditions, the coefficient of wet pavement 
friction is associated with water film depth and vehicle speed (32).  The study shows the relations 
among friction force, vehicle speed and water film depth. 

Combining the relation in the study and using pavement surface material information from 
Wisconsin STN highway log, a deceleration rate value to apply to the SSD equation was obtained 
by correlating to the pavement friction coefficient (33).  In addition, 2.5 seconds exceeding the 
90th percentile of reaction time for all drivers were used for brake reaction time to encompass the 
capabilities of most drivers (31).  Consequently, SSD was calculated by the maximum wet 
pavement deceleration rate, vehicle speed from traffic detector data, and brake reaction time. 

Strictly speaking, vehicle speed in SSD formula should be individual vehicular speeds, so 
is the gap between every pair of cars.  In this study, the average of five-minute traffic detector data 
containing the crash occurrence time was used to surrogate the real-time prevailing traffic 
conditions at the crash moment.

DCD represents the risk of losing control caused by driver overcorrection for avoiding any 
potential conflict.  DCD is calculated by the following formula. 

DCD = SSD − AVG (15)

Where,
SSD = stopping sight distance 
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AVG = average vehicle gap

In DCD formula, AVG is obtained by subtracting average vehicle length from inverse of 
vehicle density calculated by traffic detector data (34).  

As a result of data collection from several data sources, explanatory variables and the 
associated category coding used in this study are shown in Table 2. 

TABLE 2 Explanatory Variables Used in Crash Severity Prediction Model

Variable Min. Max. Mean Category Coding
At-fault driver’s sex - - - Female=1, Male=2
Alcohol or drug - - - Sobriety=1, Under alcohol/drug effect=2
Safety belt - - - Use of safety belt=1, Non-used =2

At-fault driver’s action - - -
Going straight=1, Lane change/merging/overtaking=2, 
Negotiating curve=3, Slowing or stopped=4

Curve direction - - - Curve to the right=1, Curve to the left=2
Injury transport - - - Injured people transported to hospital=1, Others=2

Terrain - - -
Horizontal curve=1, Vertical curve=2,
Horizontal/vertical curve=3, Tangent/flat=4

First harmful spot - - -
Ramp/gore=1, Shoulder/outside shoulder=2, 
Median=3, On roadway=4

Pavement surface - - - Asphaltic cement plant mix/rigid base=1, Others=2

Lighting condition - - -
Daylight=1, Dusk/Dawn/Dark=2, 
Night but street light=3

Crash type - - - Median related=1, Non-collision=2, Fixed object=3
First harmful collision - - - Sidewipe=1, Rear-end=2, Others=3

At-fault driver’s vehicle - - -
Car=1, Truck(straight)/truck-tractor=2, 
Motor cycle=3

Time of day - - - Peak-hour (6-8 a.m. & 3-5 p.m.)=1, Off-peak=2

Day of week - - -
Tuesday  to  Thursday=1,  Monday/Friday=2, 
Saturday/Sunday= 3

Quarter of year - - -
December to February=1, March to May=2, 
June to August=3, September. to November=4

Wind direction - - - No wind=1, North=2, East=3, South=4, West=5
At-fault driver’s age 16 87 35 -
Number of vehicles 2 5 2 -
Number of lanes 1 4 3 -
Lane width (ft) 12 18 12 -
Shoulder width(ft) 0/01 13/16 7/11 -
Speed limit (mi/h) 35 65 55 -
Avg. 5-min V2 5 172 94 -
Avg. 5-min SPD3 1 91 48 -
Avg. 5-min O4 (%) 0.45 49.11 13.00 -
S.D5. of V 0.94 69.46 9.78 -

10

TRB 2010 Annual Meeting CD-ROM Paper revised from original submittal.



Jung, Qin and Noyce

S.D. of SPD 0.32 63.29 5.88 -
S.D. of O 0.10 18.23 3.02 -
SSD (ft) 5 4509 384 <238=1, [238, 494]=2, >494=3
DCD (ft) 0 3825 153 <55 =1, [55, 225]=2, 225> =3
Wind speed (km/h) 0.0 43.9 9.0 <2.6=1, [2.6, 13.5]=2, >13.5=3
Temperature (ºC) 0.1 29.4 11.0 <5.0 =1, [5.0, 17.0]=2, 17.0>=3
Water film (mm/h) 0.00 0.45 0.06 <0.02=1, [0.02, 0.10]=2, >0.1=3
RI6 (mm/15min) 0.00 8.96 0.26 <0.05 =1, [0.05, 0.3]=2, 0.3>=3

1 Left shoulder width/Right shoulder width
2 Volume
3 Vehicle speed
4 Occupancy
5 Standard deviation
6 Rainfall intensity

Weather Data Interpolation 
To estimate unknown weather data, a study regarding the comparison of interpolation methods 
concluded that the inverse squared distance method is stable and appropriate for the localized field 
with short spatial correlation length scale and large variability (35).  The minimum number of 
weather stations to apply the inverse squared distance interpolation was three (36).  Therefore, the 
inverse squared distance interpolation was utilized to estimate localized weather data at the crash 
moment. 

Due to the geographical and temporal variety of data, rainfall intensity during 15 minutes 
prior to a crash, water film depth and wind speed were interpolated between three weather stations 
nearest to the crash spot by the inverse squared distance method.  However, temperature data from 
one weather station nearest to each crash was used due to its proximity.

ANALYSIS AND DISCUSSION

In this study, PROC LOGISTIC statement in SAS 9.1 was used to estimate sequential logistic 
regression models on the basis of rain-related multi-vehicle crashes with a significance level of 
0.10 for retaining predictors in the models.  The modeling process was as follows.

First of all, bivariate logistic regression of each explanatory variable was performed to 
choose an individual predictor which correlated to crash severity.  Since weather effect on crash 
severity is the primary interest of this study, the continuous weather data were specifically 
transformed to a categorical variable by quantile if any continuous weather variable was not 
selected by the bivariate logistic regression.  

Next, correlation between predictors selected by the bivariate logistic regression was 
identified by Pearson's correlation coefficient or likelihood ratio chi-squared test in order not to 
omit significant predictors in multiple logistic regression models.  After the correlation test, several 
combinations with the maximum number of uncorrelated predictors were constructed for the next 
step.  

Then, stepwise variable selection was conducted to select a multiple logistic regression 
model for each combination of the uncorrelated predictors.  Comparing the multiple logistic 
regressions by goodness of fit, parameter significance and prediction accuracy, the best multiple 
logistic regression was chosen for each format of sequential logistic regression.  Using on the same 
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measures of model performance, one of the two formats was finally selected to predict multi-
vehicle crash severities in rainy weather.  Based on proportions of actual more severe crashes 
(event) at each stage of each format, the range for event probability cut-points is provided in the 
following Table.

TABLE 3 Event Proportion in Study Area

Forward Format Backward Format
Year Stage 1 Stage 2 Stage 1 Stage 2
2004 0.34 0.05 0.02 0.33
2005 0.37 0.13 0.05 0.34
2006 0.33 0.07 0.02 0.31
2007 0.32 0.07 0.02 0.31
2008 0.37 0.08 0.03 0.35
Minimum 0.32 0.05 0.02 0.31
Maximum 0.37 0.13 0.05 0.35
Average 0.35 0.08 0.03 0.33

Forward Format
In Table 4, the global null hypothesis was rejected at both stages, indicating the estimated models 
were better to predict crash severities than constant only model and all of the parameter estimates 
for explanatory variables were significant.  At stage one, changing lanes or merging into traffic 
(driver action 2) and slowing/stopping (driver action 4) by at-fault driver decreased the likelihood 
of injury crashes in the rainfall while negotiating curve (driver action 3) by at-fault driver increased 
the likelihood.  The effects of at-fault driver’s actions at the crash moment imply that driver’s 
caution in the rainfall works comparatively less on curves.  Interestingly, large standard deviation 
of 5-minute traffic volume (SDV) was found to decrease the likelihood of injury crashes slightly, 
which may not be consistent to general expectation.  The reason may also be that a large variety of 
traffic volume in rainy weather leads to more cautious driving.  

At the second stage, vertical curves (terrain 2) and horizontal/vertical curves (terrain 3) 
were much stronger than other factors to increase the likelihood of severe crashes with fatal and 
incapacitating injuries in the rainfall while more travel lanes decreased the likelihood of the severe 
crashes.  It was found that deficiency of car-following distance (DCD) and peak traffic hour were 
likely to decrease the most severe crashes implying rainfall effects for DCD and peak hours at the 
second stage are similar to the effect for SDV at the first stage. 

Within the range of probability cut-points shown in classification table, overall prediction 
accuracy and sensitivity were reasonable at both stages.  Especially, overall prediction accuracies 
at stage two was much higher than those at stage one.  However, sensitivities at the second stage 
showed a variety within the range of probability cut-points, indicating the power of forward format 
is not stable to predict higher severities. 

TABLE 4 Forward Format of Multiple Sequential Logistic Regression 

Stage 1

LR test
ChiSq D.F. Pr > ChiSq
24.0870 4 <.0001
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Analysis of
maximum
likelihood
estimates

Parameter Estimate S.E. Odds Ratio Pr > ChiSq

Intercept 1 0.0483 0.0592 - 0.1986
Driver action 2 -0.8546 0.3026 0.425 0.0047
Driver action 3 0.7685 0.4381 2.156 0.0794
Driver action 4 -0.5278 0.2058 0.590 0.0103
SDV -0.0345 0.0158 0.966 0.0292

Classification
table

Pcut-off Overall Sensitivity Specificity FP FN
0.32 49 % 72 %   45 % 60 % 32 %
0.33 52 % 70 % 42 % 58 % 30 %
0.34 56 % 67 % 50 % 56 % 28 %
0.35 58 % 63 % 55 % 55 % 29 %
0.36 59 % 62 % 58 % 53 % 28 %
0.37 60 % 60 % 59 % 53 % 28 %

Stage 2

LR test
ChiSq D.F. Pr > ChiSq
30.6945        5 <.0001

Analysis of
maximum
likelihood
estimates

Parameter Estimate S.E. Odds Ratio Pr > ChiSq

Intercept 3.3406 1.9701 - 0.0900
Terrain 2 3.2543 0.8879 25.902 0.0002
Terrain 3 2.8603 1.3177 17.466 0.0300
Peak hour -1.8248 0.8666 0.161 0.0352
DCD -0.0093 0.0038 0.991 0.0130
Lane number -1.8159 0.6939 0.163 0.0089

Classification 
table

Pcut-off Overall Sensitivity Specificity FP FN
0.05 72 % 77 % 72 % 84 % 2 %
0.07 76 % 70 % 77 % 83 % 3 %
0.09 80 % 54 % 81 % 83 % 4 %
0.11 80 % 46 % 83 % 86 % 5 %
0.13 89 % 31 % 93 % 77 % 5 %

Backward Format
According to Table 5, small P-values in LR test at both stages reveals that the selected models with 
significant explanatory variables is better fit than the global null models. 

TABLE 5 Backward Format of Multiple Sequential Logistic Regression Model

Stage 1

LR test
ChiSq D.F. Pr > ChiSq
29.7022                4 <.0001
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Analysis of
maximum
likelihood
estimates

Parameter Estimate S.E. Odds Ratio Pr > ChiSq

Intercept 2.7670 1.7571 - 0.1153
Terrain 4 -2.1498 0.6196 0.117 0.0005
Peak hour -1.7829 0.7921 0.168 0.0244
Water film depth -17.729 8.5817 0.001 0.0388
Lane number -1.2871 0.5660 0.276 0.0230

Classification 
table

Pcut-off Overall Sensitivity Specificity FP FN
0.02 74 % 69 % 74 % 93 % 1 %
0.03 80 % 69 % 80 % 92 % 1 %
0.04 90 % 69 % 90 % 85 % 1 %
0.05 91 % 69 % 91 % 83 % 1 %

Stage 2

LR test
ChiSq D.F. Pr > ChiSq
31.2532               5 <.0001

Analysis of
maximum
likelihood
estimates

Parameter Estimate S.E. Odds Ratio Pr > ChiSq

Intercept 1.5969 0.7149 - 0.0255
Driver action 2 -1.0987 0.3364 0.333 0.0011
Driver action 3 0.8176 0.4443 2.265 0.0657
Driver action 4 -0.4482 0.2092 0.639 0.0321
Safety belt -1.6850 0.7059 0.185 0.0170
SDV -0.0315 0.0160 0.969 0.0484

Classification
table

Pcut-off Overall Sensitivity Specificity FP FN
0.31 48 % 74 % 34 % 62 % 29 % 
0.32 52 % 71 % 42 % 60 % 27 %
0.33 56 % 68 % 49 % 58 % 26 %
0.34 58 % 64 % 55 % 56 % 26 %
0.35 60 % 62 % 58 % 55 % 26 %

At stage one, the odds ratio for water film depth was much less than 1.  That is, fatal and 
incapacitating injury crashes decreased as water film depth increased.  This result implies that 
drivers tend to recognize the risk of rain covered pavements and adjust driving behavior 
accordingly.   Straight roadway section (terrain 4) and more travel lanes decreased the likelihood 
of the most severe crashes in rainy weather conditions.  The odds ratio for peak hour was also less 
than 1, which is the same result as the second stage of forward format. 

At stage two, wearing a safety belt was found to decrease non-incapacitating and possible 
injury crashes.  Except for the safety belt, selected predictors and their effects on crash severities at 
the second stage were equivalent to those at the first stage of forward format. 

Based on classification tables, overall prediction accuracies and sensitivities within the 
range of probability cut-points were reasonable at both stages.  In particular, overall prediction 
accuracies at the first stage of backward format were higher than those at the second stage of 
forward format.  Moreover, consistently high sensitivities and low false negative rates (FN) at the 
second stage imply that backward format is the most desirable to predict the most severe crashes. 
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Comparing multiple regression results based on goodness of fit, parameter significance and 
prediction accuracies, the backward sequential logistic regression model outperforms forward 
sequential logistic regression model in predicting multi-vehicle crash severity levels in rainy 
weather.  Specifically, the backward sequential logistic regression model was found to be effective 
to predict the highest level of crash severity.  In addition, weather-related factor such as water film 
depth was explicitly and significantly identified in the backward format. 

Therefore, the backward format of sequential logistic regression model was selected as the 
best final model for predicting multi-vehicle crash severity that occurred on high-speed highways 
in rainy weather. 

CONCLUSIONS AND FUTURE RESEARCH

In previous studies, the rainy weather-related factors lacked the accuracy and sophistication to 
reflect real-time pavement surface conditions and visibility during rainfall.  For instance, wet or 
dry pavement surface, average annual rainfall precipitation, and even hourly rainfall are not 
sufficient to capture the real-time rainy weather conditions prior to or during the crash occurrence. 
Using more microscopic weather data, this study assessed rainfall effects on the severities of multi-
vehicle crashes on Wisconsin interstate highways.  To comprehensively characterize weather 
conditions and their effects on crash occurrences, this study used several novel variables at the 
time of crash, in particular, 15-minute rainfall intensity, water film depth, stopping sight distance, 
and deficiency of car-following distance that have not been frequently considered in the previous 
studies.   In addition, estimated or measured weather factors were interpolated between three 
weather stations by inverse squared interpolation method for each crash location. 

In this study, sequential logistic regression models were applied to predict polychotomous 
response outcomes such as crash severities because the sequential logistic regression is more 
flexible to reflect variant predictor effects on the response categories.  The sequential logistic 
regression models were further divided into the forward format from the lowest injury severity to 
the highest one and the backward format reversing the sequence.  

As a result, the backward format of sequential logistic regression model outperformed the 
forward format in predicting crash severity levels, especially fatal and incapacitating injuries, with 
the higher prediction accuracy and it significantly identified the effect of water film depth derived 
by rain precipitation.  In the backward sequential logistic regression model, following variables 
were significantly identified: water film depth, the number of travel lanes, tangent roadway 
section, peak hour, changing lanes/merging /overtaking, slowing/stopping, standard deviation of 5-
minute traffic volume and safety belt usage.  Note that water film depth, lane 
change/merging/overtaking prior to the crash time, variant traffic volume and peak hour decreased 
the likelihood of more severe crashes, which implies that rainfall may affect defensive driving 
more than expected.  

Thus, the backward sequential logistic regression model is considered to be the most 
appropriate for determining the probability of multi-vehicle crash severity in rainy weather.  The 
resultant findings in this study can be used to provide quantitative support on improving road 
weather safety via weather warning systems, highway facility improvements, and traffic 
management.
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